Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655685

RESUMO

Correction for 'Simple synthetic access to [Au(IBiox)Cl] complexes' by Ekaterina A. Martynova et al., Dalton Trans., 2023, 52, 7558-7563, https://doi.org/10.1039/D3DT01357J.

2.
Dalton Trans ; 52(22): 7558-7563, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191083

RESUMO

Green and sustainable access to chiral and achiral gold-IBiox complexes is reported. The gold complexes were synthesized using a simple, air-tolerant, weak base protocol carried out in a green solvent. Their catalytic activity was examined in the hydroamination of alkynes. The steric protection afforded the gold center by these ligands was quantified using the %Vbur model and compared with the most commonly encountered NHCs.

3.
Nature ; 616(7956): 288-292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045922

RESUMO

Water is one of the most important substances on our planet1. It is ubiquitous in its solid, liquid and vaporous states and all known biological systems depend on its unique chemical and physical properties. Moreover, many materials exist as water adducts, chief among which are crystal hydrates (a specific class of inclusion compound), which usually retain water indefinitely at subambient temperatures2. We describe a porous organic crystal that readily and reversibly adsorbs water into 1-nm-wide channels at more than 55% relative humidity. The water uptake/release is chromogenic, thus providing a convenient visual indication of the hydration state of the crystal over a wide temperature range. The complementary techniques of X-ray diffraction, optical microscopy, differential scanning calorimetry and molecular simulations were used to establish that the nanoconfined water is in a state of flux above -70 °C, thus allowing low-temperature dehydration to occur. We were able to determine the kinetics of dehydration over a wide temperature range, including well below 0 °C which, owing to the presence of atmospheric moisture, is usually challenging to accomplish. This discovery unlocks opportunities for designing materials that capture/release water over a range of temperatures that extend well below the freezing point of bulk water.

4.
J Org Chem ; 88(1): 285-299, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36480555

RESUMO

The introduction of urea or thiourea functionality to the macrocycle skeleton represents an alternative way to control conformational dynamics of chiral, polyamines of a figure-shaped periodical structure. Formally highly symmetrical, these macrocycles may adapt diverse conformations, depending on the nature of an amide linker and on a substitution pattern within the aromatic units. The type of heteroatom X in the N-C(═X)-N units present in each vertex of the macrocycle core constitutes the main factor determining the chiroptical properties. In contrast to the urea-containing derivatives, the electronic circular dichroism of thioureas is controlled by the chiral neighborhood closest to the chromophore. The dynamically induced exciton couplet is observed when the biphenyl chromophores are present in the macrocycle core. In the solid state, the seemingly disordered molecules may create ordered networks stabilized by intermolecular S···halogen, H···halogen, and S···H interactions. The presence of two bromine substituents in each aromatic unit in thiourea-derived trianglamine gives rise to a self-sorting phenomenon in the crystal. In solution, this particular macrocycle exists as a dynamic equimolar mixture of two conformational diastereoisomers, differing in the spatial (clockwise and counter clockwise) arrangement of the C-Br bonds. In the crystal lattice, macrocycles of a given handedness assemble into homohelical layers.


Assuntos
Tioureia , Ureia , Estrutura Molecular , Conformação Molecular , Poliaminas
5.
J Org Chem ; 87(5): 2356-2366, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35029991

RESUMO

Chiral isotrianglimines were synthesized by the [3 + 3] cyclocondensation of (R,R)-1,2-diaminocyclohexane with C5-substituted isophthalaldehyde derivatives. The substituent's steric and electronic demands and the guest molecules' nature have affected the conformation of individual macrocycles and their propensity to form supramolecular architectures. In the crystal, the formation of a honeycomb-like packing arrangement of the simplest isotrianglimine was promoted by the presence of toluene or para-xylene molecules. A less symmetrical solvent molecule might force this arrangement to change. Polar substituents present in the macrocycle skeleton have enforced the self-association of isotrianglimines in the form of tail-to-tail dimers. These dimers could be further arranged in higher-order structures of the head-to-head type, which were held together by the solvent molecules. Non-associating isotrianglimine formed a container that accommodated acetonitrile molecules in its cavity. The calculated dimerization energies have indicated a strong preference for the formation of tail-to-tail dimers over those of the capsule type.

6.
Acta Crystallogr C Struct Chem ; 77(Pt 12): 745-756, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864716

RESUMO

The structure of N-triphenylacetyl-L-tyrosine (C29H25NO4, L-TrCOTyr) is characterized by the presence of both donors and acceptors of classical hydrogen bonds. At the same time, the molecule contains a sterically demanding and hydrophobic trityl group capable of participating in π-electron interactions. Due to its large volume, the trityl group may favour the formation of structural voids in the crystals, which can be filled with guest molecules. In this article, we present the crystal structures of a series of N-triphenylacetyl-L-tyrosine solvates with chloroform, namely, L-TrCOTyr·CHCl3 (I) and L-TrCOTyr·1.5CHCl3 (III), and dichloromethane, namely, L-TrCOTyr·CH2Cl2 (II) and L-TrCOTyr·0.1CH2Cl2 (IV). To complement the topic, we also decided to use the racemic amide N-triphenylacetyl-DL-tyrosine (rac-TrCOTyr) and recrystallized it from a mixture of chloroform and dichloromethane. As a result, rac-TrCOTyr·1.5CHCl3 (V) was obtained. In the crystal structures, the amide molecules interact with each other via O-H...O hydrogen bonds. Noticeably, the amide N-H group does not participate in the formation of intermolecular hydrogen bonds. Channels are formed between the TrCOTyr molecules and these are filled with solvent molecules. Additionally, in the crystals of III and V, there are structural voids that are occupied by chloroform molecules. Structure analysis has shown that solvates I and II are isostructural. Upon loss of solvent, the solvates transform into the solvent-free form of TrCOTyr, as confirmed by thermogravimetric analysis, differential scanning calorimetry and powder X-ray diffraction.

7.
Nat Chem ; 13(7): 623-624, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112992
8.
J Org Chem ; 86(9): 6433-6448, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33908243

RESUMO

We have proven the usability and versatility of chiral triphenylacetic acid esters, compounds of high structural diversity, as chirality-sensing stereodynamic probes and as molecular tectons in crystal engineering. The low energy barrier to stereoisomer interconversion has been exploited to sense the chirality of an alkyl substituent in the esters. The structural information are cascaded from the permanently chiral alcohol (inducer) to the stereodynamic chromophoric probe through cooperative interactions. The ECD spectra of triphenylacetic acid esters are highly sensitive to very small structural differences in the inducer core. The tendencies to maximize the C-H···O hydrogen bonds, van der Waals interactions, and London dispersion forces determine the way of packing molecules in the crystal lattice. The phenyl embraces of trityl groups allowed, to some extent, the control of molecular organization in the crystal. However, the spectrum of possible molecular arrangements is very broad and depends on the type of substituent, the optical purity of the sample, and the presence of a second trityl group in the proximity. Racemates crystallize as the solid solution of enantiomers, where the trityl group acts as a protecting group for the stereogenic center. Therefore, the absolute configuration of the inducer is irrelevant to the packing mode of molecules in the crystal.


Assuntos
Ésteres , Fenilacetatos , Álcoois , Estereoisomerismo
9.
J Org Chem ; 86(1): 643-656, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348985

RESUMO

A series of artificial triarylmethanols has been synthesized and studied toward the possibility of exhibiting an induced optical activity. The observed chiroptical response of these compounds resulted from the chiral conformation of a triarylmethyl core. The chirality induction from a permanent chirality element to the liable triarylmethyl core proceeds as a cooperative and cascade process. The OH···O(R) and/or (H)O···HorthoC hydrogen bond formation along with the C-H···π interactions seem to be the most important factors that control efficiency of the chirality induction. The position of chiral and methoxy electron-donating groups within a trityl skeleton affects the amplitude of observed Cotton effects and stability of the trityl carbocations. In the neutral environment, the most intense Cotton effects are observed for ortho-substituted derivatives, which undergo a rapid decomposition associated with the complete decay of ECD signals upon acidification. From all of the in situ generated stable carbocations, only two exhibit intense Cotton effects in the low energy region at around 450 nm. The formation of carbocations is reversible; after alkalization, the ions return to the original neutral forms. Unlike most triarylmethyl derivatives known so far, in the crystal, the triarylmethanol, para-substituted with the chiral moiety, shows a propensity for a solid-state sorting phenomenon.

10.
Materials (Basel) ; 13(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937873

RESUMO

A series of new benzofuryl α-azole ketones was synthesized and reduced by asymmetric transfer hydrogenation (ATH). Novel benzofuryl ß-amino alcohols bearing an imidazolyl and triazolyl substituents were obtained with excellent enantioselectivity (96-99%). The absolute configuration (R) of the products was confirmed by means of electronic circular dichroism (ECD) spectroscopy supported by theoretical calculations. Selected benzofuryl α-azole ketones were also successfully asymmetrically bioreduced by fungi of Saccharomyces cerevisiae and Aureobasidium pullulans species. Racemic and chiral ß-amino alcohols, as well as benzofuryl α-amino and α-bromo ketones were evaluated for their antibacterial and antifungal activities. From among the synthesized ß-amino alcohols, the highest antimicrobial activity was found for (R)-1-(3,5-dimethylbenzofuran-2-yl)-2-(1H-imidazol-1-yl)ethan-1-ol against S. aureus ATCC 25923 (MIC = 64, MBC = 96 µg mL-1) and (R)-1-(3,5-dimethylbenzofuran-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-ol against yeasts of M. furfur DSM 6170 (MIC = MBC = 64 µg mL-1). In turn, from among the tested ketones, 1-(benzofuran-2-yl)-2-bromoethanones (1-4) were found to be the most active against M. furfur DSM 6170 (MIC = MBC = 1.5 µg mL-1) (MIC-minimal inhibitory concentration, MBC-minimal biocidal concentration).

11.
J Org Chem ; 85(16): 10413-10431, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806087

RESUMO

A readily available stereodynamic and the electronic circular dichroism (ECD)-silent 2,5-di(1-naphthyl)-terephthalaldehyde-based probe has been applied for chirality sensing of primary amines. The chiral amine (the inductor) forces a change in the structure of the chromophore system through the point-to-axial chirality transmission mechanism. As a result, efficient induction of optical activity in the chromophoric system is observed. The butterflylike structure of the probe, with the terminal aryl groups acting as changeable "wings", allowed for the generation of exciton Cotton effects in the region of 1Bb electronic transition in the naphthalene chromophores. The sign of the exciton couplets observed for inductor-reporter systems might be correlated with an absolute configuration of the inductor, whereas the linear relationship between amplitudes of the specific Cotton effect and enantiomeric excess of the parent amine gives potentiality for quantitative chirality sensing. Despite the structural simplicity, the probe turned out to be unprecedentedly highly sensitive to even subtle differences in the inductor structure (i.e., O vs CH2).

12.
J Org Chem ; 85(5): 2938-2944, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32040920

RESUMO

In this work, the first application of 3,5-dimethyl-4-nitroisoxazole as a vinylogous pronucleophile in the allylic-allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates is described. The reaction has been realized under nucleophilic catalysis conditions with dimeric cinchona alkaloids, providing excellent enantiocontrol of the process. The usefulness of the products thus obtained has been confirmed in selected chemoselective reactions. The most important one involves the transformation of the isoxazole moiety into a carboxylic acid group, thus opening access to dicarboxylic acid derivatives.

13.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041345

RESUMO

The cascade process of a dynamic chirality transmission from the permanent chirality center to the stereodynamic triphenylmethyl group has been studied for series of optically active trityl derivatives. The structural analysis, carried out with the use of complementary methods, enabled us to determine the mechanism of chirality transfer. The process of chirality transmission involves a set of weak but complementary electrostatic interactions. The induction of helicity in a trityl propeller is revealed by rising non-zero cotton effects in the area of trityl UV-absorption. The presence of an additional stereogenic center in close proximity to the trityl-containing stereogenic center significantly affects the sign and, to a lesser extent, magnitude of the respective cotton effects. Despite the bulkiness of the trityl, in the crystalline phase, the molecules under study strictly fill the space. In the crystal, molecules form aggregates stabilized by OH•••O hydrogen bonds. However, the presence of two trityl groups precludes formation of OH•••O hydrogen bonding. Additionally, the trityl group seems to be responsible for the formation of the solid solutions by e.g., racemates of trans- and cis-2-tritylcyclohexanol. Therefore, the trityl group acts as a supramolecular protective group, which in turn can be used in the crystal engineering.


Assuntos
Álcoois/química , Dicroísmo Circular , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Estereoisomerismo
14.
Chirality ; 32(3): 407-415, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975559

RESUMO

Bioorganic asymmetric reduction of carbonyl compounds is one of the most important fundamental and practical reactions for producing chiral alcohols. The stereoselective bioreduction of prochiral ketones of benzofuran derivatives in the presence of yeast-like fungus Aureobasidium pullulans contained in the antifungal Boni Protect agent was studied. Biotransformations were carried out under moderate conditions in an aqueous and two-phase system and without multiplication of the bioreagent. Despite similar chemical structure, each of the used ketone has been reduced with varying efficiency and selectivity. One of the reasons for these results is the presence of a whole set of oxidoreductases in A. pullulans cells that are sensitive to the smallest changes in the structure of prochiral substrate. The unsymmetrical methyl ketones were biotransformed with the highest selectivity. Aureobasidium pullulans microorganism is less effective in the reduction of unsymmetrical halomethyl ketones. The presence of a heteroatom in the alkyl group significantly decreases the selectivity of the process. Finally, as a result of the preferred hydride ion transfer from the dihydropyridine ring of the cofactor to the carbonyl double bond on the re side, secondary alcohols of the S and R configuration were obtained with moderate to high enantioselectivity (55-99%).


Assuntos
Ascomicetos/metabolismo , Benzofuranos/química , Antifúngicos , Benzofuranos/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Catálise , Cetonas/química , Cetonas/metabolismo , Estrutura Molecular , Solventes , Estereoisomerismo
15.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658607

RESUMO

The molecular recognition process and the ability to form multicomponent supramolecular systems have been investigated for the amide of triphenylacetic acid and l-tyrosine (N-triphenylacetyl-l-tyrosine, TrCOTyr). The presence of several supramolecular synthons within the same amide molecule allows the formation of various multicomponent crystals, where TrCOTyr serves as a chiral host. Isostructural crystals of solvates with methanol and ethanol and a series of binary crystalline molecular complexes with selected organic diamines (1,5-naphthyridine, quinoxaline, 4,4'-bipyridyl, and DABCO) were obtained. The structures of the crystals were planned based on non-covalent interactions (O-H···N or N-H+···O- hydrogen bonds) present in a basic structural motif, which is a heterotrimeric building block consisting of two molecules of the host and one molecule of the guest. The complex of TrCOTyr with DABCO is an exception. The anionic dimers built off the TrCOTyr molecules form a supramolecular gutter, with trityl groups located on the edge and filled by DABCO cationic dimers. Whereas most of the racemic mixtures crystallize as racemic crystals or as conglomerates, the additional tests carried out for racemic N-triphenylacetyl-tyrosine (rac-TrCOTyr) showed that the compound crystallizes as a solid solution of enantiomers.


Assuntos
2,2'-Dipiridil/química , Diaminas/química , Fenilacetatos/química , Sais/química , Tirosina/química , Amidas , Varredura Diferencial de Calorimetria , Cátions , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Soluções/química , Estereoisomerismo
16.
Bioorg Chem ; 92: 103204, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472459

RESUMO

This report presents the whole-cell biotransformation of benzofuranyl-methyl ketone derivatives with the application of Polyversum antifungal agent containing Pythium oligandrum microorganism. Stereochemistry of the reduction of prochiral substrates was modified by the bioconversion conditions (concentration of reagents, a source of the carbon atom, biotransformation medium). In optimized conditions enantioselective process was noted. Secondary alcohols with excellent enantiomeric purity and high yields were obtained. The enantiomeric excess and conversion degree of 1-(benzofuran-2-yl)ethanol, 1-(7-ethylbenzofuran-2-yl)ethanol and 1-(3,7-dimethylbenzofuran-2-yl)ethanol were 99%/98.1%, 94%/94.4% and 99%/72.6%, respectively. In the presence of P. oligandrum, one of the enantiotopic hydrides of the dihydropyridine ring coenzyme is selectively transferred to a re side of the prochiral carbonyl group to give products with S configuration. This study demonstrates an inexpensive, eco-friendly approach in synthesis of optically pure benzofuran derivatives and can be an interesting alternative to organocatalysis. Furthermore, this method can be used in biotechnology processes due to its good chemical performance and a high degree of product isolation.


Assuntos
Cetonas/metabolismo , Pythium/química , Pythium/citologia , Antifúngicos , Biotransformação , Humanos , Cetonas/química , Estrutura Molecular , Pythium/metabolismo , Estereoisomerismo
17.
Org Biomol Chem ; 17(33): 7782-7793, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31402354

RESUMO

Considered to be rigid, the urea and thiourea functionalities, often used in material chemistry and in asymmetric organocatalysis, are able to transmit information regarding 3D structure from a permanently chiral inducer part to a dynamically chiral (reporter) part of the molecule. Despite a considerable distance between the inducer and the reporter parts of the molecule, the chirality transfer phenomenon has been demonstrated for a series of secondary N-alkyl-N'-trityl ureas and thioureas. The induction of helicity in a stereodynamic trityl propeller is revealed by rising non-zero Cotton effects in the area of trityl absorption. The information regarding the 3D structure of the inducer is transferred to the reporter part of the system through a set of weak but complementary electrostatic interactions. The presence of two supramolecular motifs in the same molecule, characterized by opposite properties, significantly affected the molecular solid state structure of the thioureas and their abilities to assemble. In the crystalline phase, the model, a chiral N-tert-butyl-thiourea derivative that retains the extended Z,Z conformation of the linker, is prone to form a supramolecular network typical of secondary ureas and thioureas. In contrast, the presence of the hydrophobic trityl group suppresses the thioamide NHS[double bond, length as m-dash]C hydrogen bonds. Therefore, trityl acts as a supramolecular protecting group for thioamide functionality, hampering the formation of hydrogen bonded networks in the solid state.

18.
ACS Omega ; 4(2): 3244-3256, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459541

RESUMO

Chirality transfer from circular dichroism (CD)-silent secondary alcohol (inductor) to the stereodynamic bichromophoric di(1-naphthyl)methane probe (reporter) led to the generation of intense, induced exciton-type Cotton effects (CEs) in the ultraviolet-visible absorption region. The di(1-naphthyl)methane probe exhibits extraordinarily high sensitivity to even small structural variations of the alcohol skeleton, that is, the probe is able to distinguish between an oxygen atom and a methylene group in a 3-hydroxytetrahydrofurane skeleton. Signs and amplitudes of the exciton couplets of 1Bb electronic transition might be correlated with the type of stereo-differentiating parts of the molecule flanking the stereogenic center, however, not with the absolute configuration. The origin of the induced CEs was established by means of experimental and theoretical methods. As a result, a mechanism of chirality transfer from the permanent stereogenic center to the bichromophore is proposed.

19.
Chem Commun (Camb) ; 55(16): 2301-2304, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30714591

RESUMO

A giant, chiral square-shaped octaimine macrocycle has been obtained in a controlled manner from readily available and inexpensive substrates: 9,10-diphenylanthracene-based dialdehyde and trans-1,2-diaminocyclohexane. Reduction of the polyimine led to a chiral octaamine characterized by a very large internal hydrophobic cavity.

20.
Chem Rec ; 19(2-3): 213-237, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30004168

RESUMO

A unique combination of structural flexibility, shape persistency and functionality, makes macrocycles and molecular cages as essential molecular entities that have displayed applications that go beyond chemistry. Among macrocycles, the selectively obtained symmetrical (poly)cyclic polyimines have shown great utility in the design of molecules varied in shape and properties. The reversible and thermodynamically controlled cycloimination reaction is governed by configurational and conformational constraints imposed on the intermediate products, ensures a sufficiently high level of preorganization. The high geometrical control over the macrocycle structure has profound effect on their assembly mode. In this Account, we were interested in showing how the structure of small building blocks affects the structure of macrocyclic product and further, how influenced the association mode of the given macromolecule. The latter is of primarily importance in supramolecular and in material chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...